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Abstract

Library operating system (LibOS) is a userspace version of
Linux kernel to provide an operating system personalization
(or ad-hoc network stack) as well as yet-another virtualization
primitive. Although the concept of library operating system is
not new and was established in back to 90’s, the idea here is
adding a hardware independent architecture (i.e., arch/lib) into
Linux kernel tree and reusing the rest of networking code as
a library for userspace programs in order to avoid ’reinvent-
ing the wheel’. Unlike conventional Linux kernel/userspace
model, system calls are redirected to the library in the same
process or the other userspace processes, but the framework
tries to be transparent so that all of the existing userspace ap-
plications like nginx and iproute2 are able to be used as-is. The
LibOS framework provides several interesting use cases such
as 1) a fast-path for the new protocol deployment (no need to
replace or insert new kernel code), 2) a feature-rich network
stack for a high-speed packet I/O mechanism like Intel DPDK,
3) a continuous integration for testing networking code imple-
mented in Linux kernel tree. Right now, most of in-kernel pro-
tocols like TCP, SCTP, DCCP, and MPTCP are tested to work
on top of the LibOS. Newly implemented protocol may also
work depending on the POSIX API coverage and kernel glue
code.
This paper covers the introduction of the LibOS framework
and two sub projects, Network stack in userspace (NUSE)
and Direct Code Execution (DCE), with the internal design of
the indirections, and presents the ongoing work on the multi-
process support to share a single userspace network stack
(e.g., share a userspace routing table between two processes)
via inter-process communication implemented by rumpkernel
IPC/RPC framework.
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1. Motivation
When the price of a packet was expensive and packet han-
dling was a holy operation, network stacks were implemented
in kernel space1. Fair enough. But in these days, the unit price
of packets becomes cheaper, then the assumption of kernel

1https://fosdem.org/2015/interviews/
2015-antti-kantee/

implementation has been changed: there is no longer strong
reason staying in kernel space.

The work is thus motivated to design the userspace network
stack, as a library operating system (LibOS), in order to bring
a lot of benefits to the Linux kernel like 1) rapid evolution of
network stack, 2) lightweight virtualization only focusing on
network part, and 3) full controllable testing environment.

The outlook of our LibOS design is to reuse the existing
Linux codebase and to avoid dedicated modifications to the
codebase as much as possible, and attach to the userspace
application as a library with a glue. Furthermore, we try to
incorporate all known techniques such as the way to abstract,
process modeling, and efficient CPU scheduling for the per-
formance, which were done by various previous work like
rumpkernel [9], Linux kernel library (LKL [15]), mTCP [8].

This paper briefly reviews our previous work at first, then
digs the detail of the design and implementation view, with
the newly introduced abstraction giving another instance of
execution platform (§ 2). Furthermore, we present the detail
of applications, Direct Code Execution (DCE) and Network
Stack in Userspace (NUSE) (§ 3, § 4), with the simple perfor-
mance measurement (§ 5).

2. Design of LibOS
The design of the LibOS (archlib) consists of three dis-
tinct components, 1) Host Backend Layer (virtualization core
layer), 2) Kernel layer, and 3) POSIX glue layer. Figure 1 il-
lustrates the overview of the architecture. The benefit of this
design, compared to other techniques such as porting-based
Linux stack [19], is completely transparent to the implemen-
tation of network stack: we do not have to modify that part.

2.1 Host Backend Layer
The purpose of Host Backend layer is to provide an abstrac-
tion of underlying platform: right now, the implementation
supports two backends, network simulator (ns-32) backend
and Linux userspace backend, but thanks to this abstrac-
tion, this list can be extended to other platforms like (gen-
eral) POSIX userspace application, Xen domU, and KVM
as NetBSD rumpkernel [9] does. Each backend needs to
expose required resources by private functions such as ac-
cessing clock source, receiving and sending packets thorough

2http://www.nsnam.org/
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https://fosdem.org/2015/interviews/2015-antti-kantee/
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Figure 1: Overview of library operating system architecture.
Network stack part such as TCP, IPv4/v6 implementation re-
mains untouched with the surround components above and
below parts.

(virtual) network devices, or allocation of memory, schedul-
ing processes, etc. Then the network stack in Linux kernel
tree will access these resource via well-defined interfaces like
kmalloc(), jiffies, and struct net device.

2.2 Kernel layer
Kernel layer sits in the middle of POSIX and host backend
layer. It also contains unmodified network protocol imple-
mentation as shown in figure 1. The bottom part connected
to obtain and access the required resource provided by host
backend. Each resource required by upper code like mem-
ory allocation, clock source, or (virtual) network interface is
exposed transparently via a Host backend.

All the kernel context primitives such as interrupt, bottom
halves, timer, thread (e.g., workqueue) are carefully reim-
plemented by using these exposed resources, resulting other
code remains untouched.

The configurations of LibOS are done by existing utilities
such as iproute2 or iptables, thanks to the system call
hijack achieved by POSIX glue layer (detailed later).

All of the wrapped code is implemented as a hardware in-
dependent architecture, called lib, in order to avoid a bunch
of #ifdef clauses in the main body of network stack, which is
a sort of disaster (i.e., hard to track the frequent updates of
upstream codebase).

2.3 POSIX glue layer
Upon the top of Kernel layer, POSIX layer lays to bridge our
LibOS kernel and applications in order to provide transpar-
ent interface to applications. Theoretically, any kind of ex-
isting applications can execute with LibOS by indirections of
system calls. But in practice, it depends on the coverage of
POSIX API. For instance, our current design concentrates on
the socket API and related system calls so, some applications
fall into a failure of missing indirections.

The destination of system calls is dispatched by this glue
layer: if a call attempts to use a resource managed by LibOS,
the system call is hijacked and redirected into LibOS. Other-
wise, the call reaches the underlying platform (i.e., calls de-
fined by glibc). For example, gettimeofday(2) system
call returns a different value based on different clock source
managed by underlying platform, while chmod(2) uses the
host system call since LibOS does not need to intercept it.

3. Implementation
The implementation of each component presented in the pre-
vious section is slightly different between each Host backend
layer. We are going to present our two backends, Direct Code
Execution (DCE) and Network Stack in Userspace (NUSE)
with the detail of each differences and common parts.

3.1 Direct Code Execution (DCE)
Direct Code Execution (DCE)3 is a way to reuse network pro-
tocol implementations of Linux kernel on top of the ns-3
network simulator. The project itself started for the re-
search purpose, which is investigation of a protocol behavior
with a reproducible environment, but also presented a use-
ful toolset for the protocol development such as distributed
debug in a userspace with a flexible network configuration,
deterministic regression testing, etc. The detail descriptions
and figure of overall architecture are available in our previous
manuscript [20] so, we try to highlight only unique part as a
Host backend layer.

Memory management
Since DCE gives a multiple-node (instance) environment of
network stack in a single host process (by dlmopen(3)
call), the Host backend layer needs to take care of mem-
ory allocation including heap and stack management of each
(simulated) process. This is done by the network simulator
part with its own allocator implementation in order to support
fork(2) and exec(2) system calls: the memory block is
saved and restored upon the context switches in order to avoid
a conflict of global symbols.

Clock source
A clock source is derived from the clock managed by net-
work simulator: it is a clock based on a discrete sequence of
event in time, resulting a deterministic scheduler with arbi-
trary kind of tasks. Timestamp in kernel (i.e., jiffies) is ac-
cordingly updated on an entry and exit of LibOS space and
any time related function in kernel space like system calls,
timer, or interrupts refers this value as the source.

Network devices
Network devices with DCE cover a variety of virtual devices
implemented in ns-3 such as Ethernet-like device, Wi-Fi,
LTE, WiMAX, etc. All these devices appear as a generic Eth-
ernet device on the network stack side. Various configura-
tion utilities such as ethtool, iw are not available as-is but
might be able to interact with a particular bridge implemen-
tation between tools and devices.

Process and interrupt primitives
The execution contexts used in the original kernel code are

3http://www.nsnam.org/overview/projects/
direct-code-execution/
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Figure 2: Overview of NUSE architecture. Multiple pro-
cesses interact via system call proxy implemented by rump-
kernel.

carefully synchronized to the one of the Host backend layer
(i.e., network simulator). On the Host backend side, the con-
text is implemented with POSIX thread based as well as ucon-
text [6] based primitive as an option.

Note that even the context in the network simulator side
is implemented to be executed parallel, all of events are seri-
alized in the scheduler queue, which means there is no race
condition during the execution of kernel code4.

Process communication
A process abstraction in this Host backend is implemented
at the network simulator side: the struct task struct simply
refers and synchronizes the simulated process. Channels for
the inter process communication such as pipe and UNIX do-
main socket are directed to the one of host operating system.

3.2 Network Stack in Userspace (NUSE)
Network Stack in Userspace (NUSE)5 exposes the Linux ker-
nel network stack to userspace in order to achieve the network
stack personalization. The basic structure is built upon the
LibOS with the Linux operating system as a Host backend
layer, and a dedicated POSIX glue codes to redirect system
calls. Figure 2 illustrates the high-level overview of NUSE.

We also highlight the Host backend layer in this section to
grasp the difference of this application.

Memory management
Contrary to DCE, the memory management for NUSE does
not have to take special care since processes running on
NUSE always runs a single process with a single memory

4There is an experimental implementation of parallel event
scheduling in ns-3 for speedup, but not working at the time of writ-
ing.

5http://libos-nuse.github.io/

address space. Thus, the memory resource is simply obtained
from host userspace memory allocator provided by standard
library (e.g., glibc): all of memory management functions in
the original kernel code (e.g., kmalloc) are redirected to the
library call (e.g., malloc).

Clock source
The current implementation of clock access for NUSE lazily
uses the system call provided by host operating system:
we use clock gettime(2) system call to synchronized
jiffies variable to refer from timer related functions (e.g.,
add timer).

Network devices
Even if we are using struct net device and all the upper code
for our network stack, NUSE requires the dedicated entry/exit
interface to exchange packets with the outside of NUSE since
it totally bypasses the kernel network stack. No queueing are
triggered to the physical NIC. Thus we implemented virtual
network interface, as most of userspace approaches do, with
various ways ranging from raw socket based one, tun/tap de-
vices, pipe(2) based, Intel DPDK [3], and netmap [17].
Any of channels can be implemented with this interface if
required.

Process and interrupt primitives
The context primitives are also reimplemented with the
POSIX thread API (pthread) in the Host backend layer as
DCE does. Unlike DCE implementation of context prim-
itives in which all the events are serialized, the concur-
rent execution of multiple threads happens as usual and re-
quires avoiding the race condition between them. The cur-
rent implementation of NUSE lazily blocks all the thread
with sched setaffinity(2) if there is another sched-
ule context running on.

Process communication
Since the NUSE host backend embeds a network stack into a
single process, other processes have no access neither to the
process nor the network stack. As a result, we cannot benefit
to reuse standard configuration tools such as iproute2 and
iptables as DCE does.

Our design choice for supporting multiple processes with
NUSE is, also, reusing an existing idea of remote communi-
cation model designed and implemented by rumpkernel [9].
The right part of figure 2 depicts the relationship between a
hosted process on NUSE (i.e., master process) while slave
processes communicate with the master via rump system call
proxy and eventually arrive at the system call in NUSE. We
simply implemented its hypercall implementations in order to
provide system call interface to external processes.

3.3 How it works

The initialization of LibOS is triggered by calling
lib init() function, initiated by dlmopen(3) call or a
constructor section of ELF binary. It configures Host back-
end layer at first, then iterates initialization vector required by
kernel space (i.e., init call vector). Since it is a subset of boot
procedure of conventional Linux kernel, the initialization fin-
ishes immediately (though we do not have any measurement
result).

http://libos-nuse.github.io/


4. Applications
Since the LibOS is a library, which should be neutral as much
as possible, it does not have a strong claim of its position as
the use cases are defined by applications. But we highlight
several use cases of LibOS in this section with our current
experience during the development.

4.1 Network Stack Personalization
Network stack personalization, a.k.a., ad-hoc network stack,
is a primary motivation of LibOS development: deploying a
new feature without involving a network stack running upon
host operating system makes easier investigation to determine
whether the implementation works well or not.

This use case is of course motivated by Filesystem in
Userspace (FUSE)6 where NUSE focuses on the network
stack.

4.2 Combination with Any Kernel Bypass
Technologies

Network stack personalization also plays well together with
kernel bypass technology such as high-speed packet I/O
mechanism achieved by Intel DPDK [3] or netmap [17].
There are a bunch of dedicated network stack implementa-
tions for the kernel-bypass technology (mTCP [8], lwIP [4],
ipaugenblick [19], dpdk-tcpipstack [16]), but all of them are
implemented from scratch, or ported with a snapshot of a par-
ticular version of network stack, and thus lose an important
property of interoperability, which has been grown since a
couple of decades. Without implementing a network stack
from scratch, NUSE allows us to reuse a matured network
stack tested and operated for a long time.

4.3 Testing platform
Examples of debugging facilities like (single) gdb and val-
grind debugging session with multiple nodes, and code cov-
erage measurement with a flexible network configuration are
presented in our previous papers [21][2].

As a result of such debugging and development facilities, it
is trivial to implement a continuous integration (CI) platform
for Linux network stack development, which allows a whole
development community to provide a stable code base tested
in every hackers’ commit.

Figure 3 presents a screenshot of Jenkins CI7 web with
the code coverage measurement, and regression test imple-
mented in fine-grained network topology configurations. We
have been operated a nightly regression test with the latest
net-next tree, and found a couple of regressions over the
past few years. What we learnt for a recurred pattern of re-
gression, as usual software, is a lack of users, obviously in
some network subsystems like Mobile IPv6, as well as the
existence of untested code path which a committer was not
aware of it8.

6http://fuse.sourceforge.net/
7http://jenkins-ci.org/
8Our nightly tested environment to the Linux net-next tree with

Jenkins CI is available at http://ns-3-dce.cloud.wide.
ad.jp/jenkins/job/daily-net-next-sim/.

Figure 3: A typical configuration of continuous integration
by Jenkins.

5. Micro-benchmark
Although the performance is not a primary target of NUSE
development, we conducted a simple micro-benchmark to
reveal the potential of our network stack. This is an en-
couragement of the code improvement to every developer,
where there are available technologies for high-performance
userspace network stack [8][13]. Note that since the micro-
benchmark for DCE was introduced in the other paper [20],
we do not present here.

To measure the packet forwarding performance of NUSE,
we put NUSE on top of a Linux box between two Linux
boxes, and injected test traffic through NUSE. In benchmark
tests for routing performance, one Linux box sent test traffic
or ICMP request (ping), NUSE process on relay box routed
and forwarded them, and another Linux box received the traf-
fic and sent back ICMP reply. In benchmark tests for trans-
mitting performance of NUSE, the NUSE process sent test
traffic or ICMP request to a Linux box. The specification of
Linux boxes on this benchmark is summarized in Table 1. In
addition, all connections were 10 gigabit Ethernet with direct
attached cables without any switches and routers in between
boxes. In throughput tests, flowgen9 was used to generate
test traffic on the Linux box, and vnstat was used to count
received packets on the other Linux box. The test traffic was
one UDP flow consisting of 1024-bytes packets that means all
packets had same source and destination addresses and same
source and destination port numbers. All throughput results
are average of ten seconds on each permutation. Moreover,
the ping command was used to measure round trip time as
routing and transmitting delays in delay tests.

Table 1: The specification of machines on the micro-
benchmark.

Linux Boxes NUSE Box
CPU Xeon L3426 1.87GHz Xeon E5-2650 2.60GHz
Memory 4GB 32GB
NIC Intel X520 82599ES
OS Ubuntu 14.04 kernel 3.13.0-32-generic

9https://github.com/upa/flowgen

http://fuse.sourceforge.net/
http://jenkins-ci.org/
http://ns-3-dce.cloud.wide.ad.jp/jenkins/job/daily-net-next-sim/
http://ns-3-dce.cloud.wide.ad.jp/jenkins/job/daily-net-next-sim/
https://github.com/upa/flowgen
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Figure 4: The results of benchmark for routing performance
of NUSE.
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Figure 5: The results of benchmark for TX performance of
NUSE.

Figures 4(a) and 4(b) show the results of benchmark for
the routing performance, and 5(a) and 5(b) show the results
of benchmark for the transmitting performance. The “na-
tive” label on the x-axis indicates the performance when us-
ing native Linux kernel to forward packets. Other items indi-
cate network I/O mechanisms of NUSE, where dpdk is Intel
DPDK [3] with version 1.7.1, netmap is netmap [17] with
API version 11, raw is the result with raw socket-based net-
work I/O, and tap indicates using tun/tap driver. When using
tap driver as a network I/O, Linux kernel bridge was used to
switch packets from a tap interface attached to NUSE process
to a physical network interface. Other mechanisms transfer
packets from the NUSE process to physical network inter-
faces directly.

Raw socket based I/O achieves the best performance with
the NUSE. Contrary to the expectation, the performance
using DPDK or netmap is worse than raw socket and tap
based I/O. The reason of this poor performance is proba-
bly due to the current implementation of the glue between
struct net device on NUSE and host backend. The current
implementation of virtual network interface for NUSE pro-
cess does not support API for packet batching and reducing
lock. As a result, current NUSE cannot benefit from of re-
cent high-speed packet I/O mechanisms. However, to burst
packets from struct net device on NUSE process to physi-
cal interfaces, adapting a dedicated batch mechanism such as
xmit more API might improve the performance.

6. Alternatives
User-mode Linux (UML) is a way to execute the Linux kernel
completely on a userspace. The design and implementation
are close to LibOS but UML fully virtualizes the behavior of

an operating system for the transparency, while LibOS con-
centrates on a relevant part of an operating system. Moreover,
a single-process model taken by DCE (an instance of Host
backend) totally differs from UML to ease debug and obtain
controllability.

There are considerably a large number of userspace net-
work stacks: Alpine [5] and nfsim [18] aimed to provide an
automated test framework for kernel network stacks, with re-
producibility by using their own clocks. Nowadays there are
many github projects working on userspace stacks: ipaugen-
blick [19], DPDK-tcpipstack[16] and mTCP[8] for instance.
OpenOnload [7] provides a userspace network stack for dedi-
cated NIC, achieving independent performance improvement
out of host network stack. All of them stick on the specific
version of Linux kernel code or implement a network stack
from scratch. This is not maintainable in a long term in our
humble opinion, resulting less chance to be broader deploy-
ment.

Containers (LXC [1], OpenVZ [14], VServer [11]) are very
lightweight technologies for a virtualization and provides a
good isolation with a lot of recent development effort, but the
guest OS restricts to use the same kernel of host OS, resulting
lack of personalization to the network stack.

Recent new direction in operating systems is going to the
different shape of kernel: Mirage [12] created a thin library
OS for Xen platform implemented from scratch in OCaml.
OSv [10] takes a similar approach to port various operat-
ing system code into a library, which is executable on a hy-
pervisor. rumpkernel [9], which is already integrated in the
NetBSD kernel, extends the idea to the filesystem code as
well as the network stack. We think rumpkernel is the most
similar approach to us in terms of design choice as well as
implementation.

7. Summary
The concept of library operating system itself is not new but
Linux does not benefit from LibOS in a number of ways, net-
work stack personalization for each application, combination
with kernel bypass technology. Testing and development en-
vironment were highlighted as a killer use case of User-Mode
Linux (UML) but single-process model of multiple VM in-
stances with Direct Code Execution allows us more control-
lability which makes more flexible configuration of testing
and debugging.

Future work includes to improve more generality of the
code to support more applications, performance improvement
by adapting known techniques such as packet batching, con-
nection locality, efficient processors distribution, etc. These
require a large effort to develop so, we are happy to invite all
of you who are willing to join the project.

Our implementation is available at https://github.
com/libos-nuse/net-next-nuse.
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